第四百九十八章 CSi纳米晶体(1 / 2)
630shu ,最快更新纳米崛起最新章节!
在文昌发射场和王院士等人讨论了半天,黄修远将替身机器人放在专门的护送车队中,人则退出虚拟系统。
汕美总部的第一科研区内。
他来到了155研究所的06实验室。
最近一段时间,黄修远一直在该实验室工作,这个实验室的研究项目是激光晶体,即固体激光。
国内在固体激光的研发中,其实是处于相对领先的地位,由陈创天院士研发的kbbf(氟代硼铍酸钾)晶体,是国内长期严控出口的特殊材料。
kbbf晶体是一种非线性光学晶体材料,可以将其他光波转变为深紫外光,在电子显微镜和光刻机上面,都有重要应用。
而黄修远,则打算研发一种未来非常重要的激光晶体——csi纳米晶体,同样是国内一位未来的院士研发的,这种晶体是一种类似于kbbf晶体的材料,但两者又有一些区别。
kbbf专门用于激发167纳米波段的深紫外光,而csi纳米晶体是专门用于激发远红外光的。
在激光武器上,通常不用可见光和短波,而多使用长波中的远红外光。
csi纳米晶体就是专门为激光武器而生的,从csi纳米晶体的名字上,就可以知道它的原材料,就是碳和硅,工艺则是纳米工艺。
从金纳米棒的近红外光高共振效应,就可以知道,同样的物质,金单质的无定形态和特殊纳米态,其对特定光波的共振效应,是有天壤之别的。
同样,普通的碳晶体、硅晶体,并不是一种优质的激光材料。
但通过纳米工艺的调整,黄修远重新排列了碳和硅的纳米结构,形成两种特殊的纳米结构。
一种是碳24分子,由上下两个12边型叠加完成,然后这种碳24分子,通过特殊工艺进行组合,形成一张碳分子薄膜。
另一种是将硅形成一个个三角形硅分子,这些三角硅必须具备一个特性,即三角形的三个内角,角度必须是27、54、99。
然后将三角硅填充到碳薄膜中,不断叠加碳薄膜厚度,直到薄膜厚度叠加到17毫米后,就可以作为固体激光的激发晶体使用。
为什么黄修远非常重视这种晶体,原因是因为这种晶体,不仅仅可以激发远红外光,csi纳米晶体还有另一个优点,那就是电光转换效率极高,达到了惊人的968。
目前全球各地,在激光领域的研发中,各种类型的激光器电光转变效率,是参差不齐的,从1到80之间都有。
比如光纤激光器,掺镱半导体泵浦光纤激光器(泵浦波长980 n),比掺钕yag二极管泵浦激光器(泵浦波长808 n)的量子亏损(即泵浦能量和发生能量之差)低。
光纤激光器的电光转换效率,通常为70~80;泵浦yag仅约为4;半导体泵浦yag和盘形激光器,则约为40左右;二氧化碳气体激光器的光电转换效率也仅为10左右。
目前的激光武器,在远距离激光武器上,大多数以二氧化碳激光器为主,那10左右的光电转换效率,就知道这种激光器的缺点了。
发射出去1千瓦的激光,就有9千瓦电能变成废热和线路损耗,而被浪费掉。
这不仅仅浪费了电能,也加大了供电难度,同时导致激光器功率难以提升。
csi纳米晶体,其实就是固体激光器中的光纤激光器。
光纤激光器之所以有如此高的电光转换效率,那是由于激光始终被包含在光纤晶体内,因而激光腔内,不会存在其它导致激光损失的因素。
以前光纤激光器很难做成大型的,最多就是激光笔大小。
而csi纳米晶体改变了这一个缺陷,可以制造得非常巨大,而且可以通过扩大面积,和加大csi纳米晶体的厚度,实现输出功率的提升,提高激光的凝聚度。