乐心人
会员书架
首页 > 玄幻奇幻 > 请叫我造物主 > 001 上一章注释[001]

001 上一章注释[001](1 / 2)

章节目录 加入书签
好书推荐: 将倾月 穿越之四合院中的奋斗 最后的塔 原神:我将引领人类前进 奔现 古神序列之黑寰魔嗣 次元入侵之吞噬 闪婚老公是隐藏首富江宁冷御宸 缥缈寻仙路 抓只丧尸来种田

写在8月25日2:53,发布后发现上下标给我全滤了?,我调整一下,过会儿再看

硬核程度:☆☆☆☆☆

涉及领域:计算理论

大标题:三种函数外加三种操作怎样解决所有可计算问题?为什么偏递归函数可以制造无限循环?

可能是全网最不报菜名、最不装比的解释。

以下开始:

首先,什么是可计算?

可计算就是指,有一个算法,我们把它交付给计算机后,计算机可以像执行一个函数一样,接受我们给它的输入,然后返回输出,这个输出就是我们想要的答案。

为了方便描述,先行约定一下数学符号。

假设我们有一个乘法器,叫做mult,它可以接受一对整数作为输入,把它们相乘后输出一个整数。

比如,输入(3,4)输出12

输入(6,2)输出12

输入(,6)输出

这时,我们把这些输入数对叫做domain,输出的一个数叫做codomain。如果我们用z来代表全体整数集,那么这个平平无奇的乘法器就可以用数学符号表示为:

mult:z^2→z

中间的这个→表示这个mult是一个totalfunction,也许可以称作“全函数”吧,意思是每一个domain里的输入,都能对应一个codomain里的输出。

与全函数相对应的是,是“偏函数”。对于偏函数,对于有些输入,它并不能给出输出。比如一个除法器,当我们给它(6,)时,它输出不了任何东西。这个除法器可以表示为:

div:z^2—z

这里的单横线代表这是一个偏函数(其实应该用半箭头表示,但在这里打不出来

好了,定义好符号之后,就可以清爽地描述我们的三种基本函数:后继函数、零函数、投影函数。

后继函数:succ:n→n,succ(x)=x+1,n代表自然数集。我们给它2,它输出3;给它3它输出4。总之就是往上+1

零函数:zero:nn→n,zero=。不管给它什么,它都输出

投影函数:projn:nn→n,projin(x1,,xn)=xi。它接受长度为n的输入,输出第i个自然数。比如,proj22(1,3)=3。

好了,盖大楼的砖块一共就这么三种,接下来把它们组合在一起就行了。

我们定义一个叫“组合”的函数f,它的功能是把n个函数组合在一起:

f:nn—n

具体的,如果每一个被组合的函数g都可以接受同一组参数(x1,,xm),那么组合n个g函数的操作可以被表示为:

f·[g1,,gn]:nm—n

展开为:

f·[g1,,gn](x1,,xm)=f(g1(x1,,xm),,gn(x1,,xm))

举个栗子:

我们构造一个函数one,one(x)=1,即:不论给它什么输入,它都输出为1,那么:

one(x)=succ()=succ(zero(x))

即:succ·[zero]=one

验证一下:

succ·[zero](x)=succ(zero(x))=succ()=1

succ和zero两个基本函数组成了我们要的one,完美。

如果栗子再复杂一点,我们想要一个加法器add,add(x,y)=x+y,怎么用那三种基本函数组合?

也很简单,从具体输入入手:

add(3,2)=succ(add(3,1))=succ(succ(add(3,)))=succ(succ(3))

似乎只需要组合多个后继函数就可以了呢。

当然,这里面有一个毛病,在于我们在没有定义好add的前提下,先入为主地认为add(3,)=3

所以我们不能认为自己就这么简单地构造了add,只能退而求其次地得到以下关系:

add(x,y+1)=succ(add(x,y)),这个式子是十分严谨的。

更具体地,要想算出add(x,y+1),就要知道add(x,)=x,我们称add(x,)=x为基准条件;add(x,y+1)=succ(add(x,y))为递归条件。

看起来就差临门一脚了,只要我们能用三种基本函数构造出add(x,)=x,就能得到add(x,y+1),也就能构造出我们想要的加法器。

也很显然,add(x,)=x=proj11

于是,我们的加法器有了。

这种看起来很像左脚踩右脚登天的构造方式叫做“原始递归”,它的定义是这样的:

基准函数f:nn—n

递归函数g:nn+2—n

使用f和g的原始递归h=pn(f,g):nn+1—n

对于h:

点击切换 [繁体版] [简体版]
章节目录 加入书签
新书推荐: 纯阳武神 《天元》 超神级加速系统 末世血魔 末日仙愿 最终铁堡 无限之黄金圣斗士 星耀天穹 末世之机械召唤师 噬灵妖魂